UNIVERSITY of CALIFORNIA
SANTA CRUZ

Prestan: The Design and Implementation of a WebDAV Server Performance Test
Suite

A project report submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE

by

Teng Xu

March 2004

The project report of Teng Xu is approved:

Professor Jim Whitehead

Professor J.J. Garcia-Luna

Abstract

Prestan: The Design and Implementation of a WebDAV Server Performance Test
Suite

By

Teng Xu

With the rapid growth of WebDAV applications and the increasing scale of data
management in WebDAV repositories, there is increasing interest in the performance
of WebDAV servers. However, no existing tools provide detailed WebDAV server
performance information. In this paper we present an automated client-side testing
tool that can accurately and comprehensively measure WebDAV server performance,
thereby providing developers with significant visibility into server performance
behavior. The contribution of this work is fourfold: first, we initiated research on
WebDAV server performance measurement, which had not previously received public
attention in the WebDAV community; second, we improved the client-side measuring
approach and made it accurately reflect the server’s state; third, we designed and
implemented a new testing tool called Prestan; fourth, we discovered and resolved a
performance bottleneck in the Neon WebDAV client library, thereby improving the

performance of WebDAV clients that use this library.

CONTENTS

Abstract

1 INTRODUCTION.ccoiiiiiiiiii s
2 BACKGROUNDccoiiicicinereeeee e

2.1 HTTP L L e
2.2 WEBDAV ...

3 RELATED WORK ..ot
4 DESIGN L.t

4.1 RESPONSE TIME ..euviiuiiciieeieeieeetreetreeteesteeereseesseesssesseesnnesnnessneas
4.2 NAGLE ALGORITHM ...iitiiiiieitie e eie e seesteesae e sae e e e e e snee e
4.3 NETWORK LATENCY ...cvviiureitieetieeteeeteeeteeeteesveesseessaesseesseesseesseens
4.4 CONCURRENT MODEL ...cuvvieitiiecteeeieeesteeesteeesteeessvaesnesensneesseeens

5 IMPLEMENTATIONoooiiiiii e

5.1 PROPERTIES MANIPULATIONccoovviiiiiiiniiiisienisieisies s
511 PROPPATCH. ..ot
512 PROPFIND ..o

5.2 RESOURCE MANAGEMENTccciiiiiiiiiinnisiss s
521 PUT o
522 GET o

5.3 NAMESPACE MANAGEMENT ...ccooiiiiiiiiniii s
531 MKCOL ...ciiiiiiiiiiiii s
5.3.2 COPY oo
533 MOVE ...
5.3.4 DELETE ..ot

54 LOCK MANAGEMENTccoiiiiiiiiiiiiiisieiss s
541 LOCK/UNLOCKooiiiiiiiieinccc e

5.5 THEUSER INTERFACE OF PRESTANcccciiiiiiiiiisiiensenns

56 PRESTAN OUTPUT FORMAT ..o

6.1 PRACTICE ONE....uvviieeeteeeeeeeeee e eete e et e e eeeeee s et eesnreeessenenesans
6.2 PRACTICE TWO ottt ettt ettt e e e e e e ettt et e e e e e s sab bbb e saeeessssbbanasaesessasses

T CONCLUSION.....oiiiiiiece et
8 ACKNOWLEDGEMENTS ...
REFERENCE ..ottt ettt ane e

6 EXPERIMENTS ..o s

..................................... 2

1 Introduction

Despite the significant effort spent on research and development related to the
WebDAV protocol in both academia and industry, to date there has been little research on
WebDAV server performance. With the rapid growth of WebDAV applications and the
increasing scale of data management in WebDAV repositories, there is increasing interest
in the performance of WebDAV servers. Developers have intuitive sense that some
operations are faster than others (such as a PROPPATCH of single property should be
faster than a PROPPATCH for multiple properties). However, there is no concrete
knowledge concerning how much faster and where performance bottlenecks arise. To
improve understanding of WebDAV performance, it is critical that quantitative
measurements are broadly available to the WebDAV development and user community.

Despite the importance of measuring and understanding the behavior of WebDAV
servers, no existing tools provide detailed WebDAV server performance information. In
this paper we present an automated client-side testing tool that can accurately and
comprehensively measure WebDAV server performance, thereby providing developers
with significant visibility into server performance behavior. Furthermore client
developers also have benefit from our work by better understanding server performance
characteristics (such as throughput and locking delay), thereby supporting rational design
choices in client design.

There are several contributions in our work. First, we initiated research on
WebDAV server performance measurement, which had not previously received public
attention in the WebDAV community.

Second, we improved the client-side measuring approach and made it accurately

reflect the servers’ state. Third, we designed and implemented a new testing tool called
Prestan, which can comprehensively measure WebDAV server performance and help
developers gain insight into the server performance characteristics. Fourth, we discovered
and resolved a performance bottleneck in the Neon WebDAV client library [4], thereby
improving the performance of WebDAV clients that use this library.

The remainder of this paper is organized as follows. Section 2 introduces the
background related to WebDAV server measurement. Section 3 presents some existing
WebDAV clients that can be used to test WebDAV servers. In section 4, we present the
design details for Prestan, including our client-side measurement approach, the method of
response time computation, measurement accuracy issues, etc. Section 5 gives the
implementation details for each method. In section 6, we use Prestan to measure the
performance of a group of WebDAV servers along with analysis of these results. Finally,

section 7 summarizes the contributions of this work.

2 Background

This section briefly describes version 1.1 of the HTTP protocol, and then
introduces WebDAV, which extends the functionality of HTTP1.1 for remote

collaborative authoring.

21 HTTP1.1
The Hypertext Transfer Protocol (HTTP) [3] is a widely used application-level

protocol for distributed, hypermedia information systems. It defines eight methods: GET,
PUT, POST, OPTIONS, HEAD, TRACE, DELETE, and CONNECT. In practice,

however, only GET, POST and CONNECT are widely used by ordinary browsers. PUT

and DELETE were designed to allow some limited authoring functionality, but in
practice they are not defined well enough to be useful.

To enhance the performance of HTTP, one interesting enhancement in HTTP1.1 is
supporting “persistent connections” [3, 6, 7], whose basic idea is sending multiple
requests over a single TCP connection. There are two kinds of features in this technique,
connection “keep-alive” and “pipelining”.

“Keep-alive” allows multiple HTTP requests to share a single TCP connection,
which can greatly reduce the slow start [12, 17] between a sequence of operations (such
as 1000 consecutive requests in the same test) by avoiding multiple TCP opens and
closes.

“Pipelining” allows consecutive HTTP requests to be sent without waiting for the
previous response; accordingly, multiple requests and responses can be contained in a
single TCP segment. This technique brings no benefit to the response time of individual
requests, but can greatly improve client-side throughput. Some existing testing tools take
advantage of this technique to overload the server without adopting the complicated
implementations of S-Client [10] technique, which consists of a pair of processes, one
process is responsible for generating HTTP requests and the other handles the HTTP

response.

2.2 WebDAV
WebDAV [1], Web Distributed Authoring and \ersioning, is a suite of protocol

extensions to HTTP/1.1. It transforms the read-only web into a writeable medium
permitting collaborative authoring and management of resources and properties. Unlike

SOAP [14], which is layered on top of HTTP, WebDAV is an extension to HTTP. Without

changing existing HTTP functionality, WebDAV adds new authoring functionalities,
including file storage, directory management and collaborative authoring.

The WebDAV protocol [2] supports all HTTP methods, including OPTIONS, GET,
HEAD, POST, PUT, DELETE, TRACE, and CONNECT. There are added new features
such as locking (concurrency control), properties, and namespace manipulations. Table

1 lists all seven new methods supported by WebDAV, as defined in RFC 2518 [17].

PROPPATCH Set and/or remove properties defined on a resource

PROPFIND Retrieve property values from a resource

MKCOL Create new empty collections

MOVE Move resources or collections

COPY Create duplicate resources or collections

LOCK Lock a resource/collection to avoid overwrite conflicts

UNLOCK Unlock an locked resource/collection to make it available for writing

Table 1: Seven WebDAV Methods

Before WebDAV, it was difficult for people to collaborate on Web-based documents
using tools from multiple readers due to the lack of a standard way to synchronize the
activities of different authors. WebDAV solves this problem with the introduction of locks.
Similar to file system, there are two kinds of locks in WebDAV: shared locks and
exclusive locks. Depending on whether or not the LOCK/UNLOCK methods are
supported, WebDAV servers can be categorized into two classes. Class 1 WebDAV
servers must support all WebDAV methods except for LOCK and UNLOCK, while Class

2 WebDAV server must support all WebDAV methods in RFC 2518 [17].

Another new feature of WebDAV is supporting property management. Properties in
WebDAV are essentially the metadata of documents, and are organized as triples of
namespace, name and value. The namespace in the triple is an XML namespace. The
property name is represented as an XML element name. The property value is represented
as a sequence of well-formed XML. With the combination of namespace and property
name, the type of property is determined. Properties are represented during network
transmission as XML, but can be stored in a wide range of repositories. Some servers
implement a WebDAV repository on top of file system, such as Apache [5], Sambar [16],
SunONE WS6.1, and Microsoft 1IS. To better support DASL, some servers implement
the WebDAV repository on top of a database system, examples including Catacomb [4],
SoftwareAG Tamino [18], Xythos, and Oracle’s WebDAV support.

There are two kinds of properties in WebDAV, live and dead. Live properties are
server-defined properties, whose semantics and syntax are enforced by the server; dead
properties are user-defined, whose semantics and syntax are not enforced by the server.
For example, ‘getcontentlength’, ‘creationdate’, ‘getlastmodified” are live properties for
all WebDAV resources. Properties like ‘author’ and ‘keywords’ are dead properties,

whose values must be updated by the client.

3 Related work

There are a wide variety of WebDAV clients that can be used to test WebDAV
servers in both industry and academia.

Cadaver [4] is a widely used WebDAV client that supports file upload, download,
namespace operations and lock operations. Although it supports all the methods specified

in RFC2518, these operations need to be performed manually, thereby greatly reducing

the utility of Cadaver for automated testing.

Davtool [4] is another WebDAV client with command line style that can perform all
WebDAV methods. Unlike Cadaver, Cadaver can work within shell scripts, although it
solved the inefficiency problem in Cadaver by supporting batch work, it still does not
support performance measurement.

Litmus [4] is a popular WebDAV server compliance test suite, which can
comprehensively test all WebDAV methods, ranging from property manipulation to
locking management. However, these tests are just WebDAV compliance tests. Similar to
the previous three tools, it does not support performance measurement.

Apache benchmark [13] is a widely used web server performance test suite.
However, it is restricted to the existing HTTP methods, and does not support WebDAV
methods like PROPFIND and MKCOL.

There are undoubtedly some performance measuring tools developed by tester
working for specific WebDAV vendors, however, none of these performance testing tools

has been publicly released for use by the WebDAV community.

4 Design

A good test tool should correctly and accurately reflect the status of the target
system. In this section, we will present our measurement approach, and describe how to
bound the response time, how to avoid delays incurred by TCP algorithms, and how to
alleviate network latency.

Generally, server performance can be measured at two places, the server side or the
client side. Server side measurements provide us with detailed information about the

server, but incur some measurement overhead and may impair the accuracy of

measurements. In contrast, the client-side approach introduces no overhead to the server,
thereby more precisely reflecting the performance behaviors of servers. The problem with
this approach is the interference caused by network latency. However, after examining the
interaction between client and server and carefully setting up the experimental

environment, the accuracy of this approach can be greatly improved.

4.1 Response time

As there are two places for performing measurements (server or client), response
time can be defined in two ways.

From the aspect of servers, system response time is the interval between the receipt
of the end of transmission of an request message and the beginning of the transmission of
a response message to the station originating the inquiry.

From the aspect of clients, the response time is the interval between the last byte
sent and the first byte received. Since we take the client-side approach, our measurement
should conform to this definition.

In Neon library [4], used by the Prestan tool, WebDAV method is performed using
the following sequence: Build request > Open connection (if exists, reuse it) = Send
headers = Send request body - Read response headers - Read response blocks - End
request. Based on the client side definition, the response time should be the time between

the end of “send request body” step until just before the “read response headers” step.

4.2 Nagle algorithm

Nagle algorithm [8] is implemented at TCP layer to reduce the number of small
segments by delaying their transmission. The algorithm states that if a given connection

has outstanding data, then no small packets will be sent until the existing data is

acknowledged. Thus, TCP will always send a full-sized packet if possible.

Nagle algorithm often interacts with TCP delayed ACK algorithm [17], which
causes TCP to not send an ACK immediately when it receives data. Instead, an ACK will
only be sent after delay, the hope being that during this delay there will be additional data
to send back, allowing the ACK to piggyback on this data, thereby saving one TCP
transmission segment.

Though the Nagle algorithm improves network efficiency, it can increase client side
response time, especially for small requests that cannot fill a full packet, thereby
impairing the accuracy of the measurement. In our testing tool, the HTTP request headers
and request body were sent out using separate socket WRITEs. This caused the second
WRITE will to not be sent until receiving the ACK of the first WRITE. However, the
server cannot process the entire HTTP request without receiving the request body, and
therefore it delays sending ACK for the first WRITE. Figure 1 shows the interaction of
Nagle algorithm with delayed-ACK and Figure 2 shows the effect after disabling the
Nagle algorithm.

Our initial experimental results showed that PROPPATCH for a single property was
unreasonably 30ms slower than PROPPATCH for multiple properties. After ruling out the
possible factors such as the inefficiency of XML parsers, we found out that the Nagle
algorithm was reason. After disabling this algorithm, the response time for single
property PROPPATCH was almost 30ms faster than before, and the improved
methodology now more precisely reflects the state of the WebDAV server being

measured.

Request Header

T

> Delayed ACK

~/

ACK
Request Body)
} Server Processing

ACK + Response

Timeline Client Server

Figure 1: The interaction of Nagle Algorithm with Delayed-ACK

Request Header

—
| RequesiBody ——
a Y } Server processing

ACK + Response
v

Timeline Client Server

Figure 2: Avoidance of Nagle Algorithm

4.3 Network latency

As mentioned in section 4.1, one difficulty of the client-side approach is the
interference of network latency. Generally, network latency contains two components, the

transmission delay and the propagation delay.

The transmission delay is the time required to transmit the packet into the link. In
our environment, this delay is mostly caused by client-side queuing. Since we disabled
the Nagle algorithm, the transmission delay is negligible.

Propagation delay is the time required to propagate data from one end to the other
end of the link that connects two computers. This delay in our environment is also
negligible, since the test client and servers under test are directly connected by a

fullplex100M-Based Ethernet link.

4.4 Concurrent model

To better characterize WebDAV server scalability, we introduce the notion of
“concurrency level” into our measurements. Concurrency level captures the degree to
which many requests are being made simultaneously. Our concurrency model is based on
the WebStone [9, 11, 15] benchmark, which consists of one webmaster and multiple web
clients. A webmaster is a process in charge of a group of client processes, and its
responsibilities include spawning web-client processes, starting them simultaneously, and
collecting testing results back. Web clients are a group of processes issuing requests and
directly performing measurements on the WebDAV server.

One difficulty of the concurrency model is guaranteeing that requests are sent
simultaneously. As shown in figure 3, a group of clients are started by the webmaster
almost at the same time and each of them sends out a continuous sequence of requests.
Certainly, those processes cannot be started exactly at the “same time” in a shared time
operating system. To attack this problem, we only collect the data from time space in
which there are overlapped requests. Due to the overhead of process context switching,

the maximum concurrency level supported by Prestan is fifteen.

10

Process 4
Process 1
Process 3
Process 2

Overlapped requests

v
Timeline

Figure 3: Approach to Obtain Simultaneous Requests

5 Implementation

This section describes the implementation of the Prestan test suite in detail. For
each test, we first introduce an objective, and then provide the WebDAV method request
and XML request message bodies to illustrate the implementation in detail. In particular,
we use “X-Prestan” header to identify each test case of Prestan in the log file, each
X-Prestan header includes test case number and name.

According to the functionalities of these methods, we divide them into four
categories: properties manipulation, resource management, namespace management and
locking management.

As mentioned in Secion 4, each test case was repeatedly sent a certain number of
times (the minimum is 100 times in our configuration) and the measurements were

gathered only from successful responses, the failed ones were filtered out.

5.1 Properties manipulation

There are two kinds of properties in WebDAV, live properties and dead properties.

11

Live properties are a fixed number of pre-defined metadata items that are
automatically updated by the server. In contrast, the dead properties are unlimited,

and can be arbitrarily added and deleted.

5.1.1 PROPPATCH

¢ Objective: Measure the performance of writing properties. As we
mentioned before, a live property is pre-defined and cannot be explicitly
changed. This test will focus on writing dead properties. Also, since
PROPPATCH collection with “Depth Infinity” is not specified in RFC 2518,
we only focus on PROPATCH for a single resource. According to the
number of dead properties being set, we divided this method into two
classes: PROPPATCH of a single property and PROPPATCH of multiple
properties.
¢ Implementation:
Upload a single resource to the server, and then repeatedly perform
Proppatch operations on this resource.
The test can write a:
o0 Single dead property
0 Multiple dead properties (the number of dead properties is
configurable, with 10 as the default).
In the figure below, the top box show the HTTP request line and headers

while the bottom box gives the HTTP request body.

Method: PROPPATCH [Dead, multiple properties on single resource]

12

PROPPATCH /basic/davtest/prop HTTP/1.1
Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_0-dev
Connection: TE

TE: trailers

Content-Length: 1065

Content-Type: application/xml

X-Prestan: (null): 4 (propfinddead)

<?xml version="1.0" encoding=""utf-8" ?>

<D:propertyupdate xmlns:D="DAV:''><D:set><D:prop><prop0
xmlns=""http://webdav.org/neon/DavTester/">value0</prop0></D:prop></D:set>
<D:set><D:prop><propl
xmIns="http://webdav.org/neon/DavTester/'>valuel</propl></D:prop></D:set>
<D:set><D:prop><prop2
xmIns=""http://webdav.org/neon/DavTester/"">value2</prop2></D:prop></D:set>
<D:set><D:prop><prop3
xmIns=""http://webdav.org/neon/DavTester/">value3</prop3></D:prop></D:set>
<D:set><D:prop><prop4
xmIns=""http://webdav.org/neon/DavTester/">value4</prop4></D:prop></D:set>
<D:set><D:prop><prop5
xmlns=""http://webdav.org/neon/DavTester/">valueb5</prop5></D:prop></D:set>
<D:set><D:prop><prop6
xmIns=""http://webdav.org/neon/DavTester/">value6</prop6></D:prop></D:set>
<D:set><D:prop><prop7
xmIns=""http://webdav.org/neon/DavTester/">value7</prop7></D:prop></D:set>
<D:set><D:prop><prop8
xmIns=""http://webdav.org/neon/DavTester/">value8</prop8></D:prop></D:set>
<D:set><D:prop><prop9
xmIns=""http://webdav.org/neon/DavTester/">value9</prop9></D:prop></D:set>
</D:propertyupdate>

Method: PROPPATCH [Dead, single property on single resource]

PROPPATCH /basic/davtest/prop HTTP/1.1
Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_0-dev
Connection: TE

TE: trailers

Content-Length: 192

Content-Type: application/xml

X-Prestan: (null): 3 (proppatch)

<?xml version="1.0" encoding=""utf-8" 7>

<D:propertyupdate xmlns:D="DAV:''><D:set><D:prop><prop0
xmIns="http://webdav.org/neon/DavTester/">value0</prop0></D:prop></D:set>
</D:propertyupdate>

13

5.1.2 PROPFIND

¢ Obijective: Measure the performance of reading properties. Performance
measurement of the PROPFIND method is more complicated than for

PROPPATCH since it can be applied to live properties. Since some servers

turn off the “Depth Infinity” option for collection operations, we only focus

on PROPFIND for a single resource. Similar to PROPPATCH, we classify
tests by the number of properties: PROPFIND single property and

PROPFIND multiple properties. We additionally divide tests into those for

live or dead properties.
¢ Implementation.

Upload a single resource to the server, PROPFIND corresponding
properties to the object, and then repeatedly perform a PROPFIND operation on
this resource.

The test can read a:

o0 Single dead property

0 Multiple dead properties (the number of dead properties is
configurable, 10 is the default).

o Single live property

o Multiple live property (11 common used live properties)

Method: PROPFIND [Dead, multiple properties on single resource]

PROPFIND /basic/davtest/prop HTTP/1.1
Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24._.0-dev
Connection: TE

TE: trailers

Depth: O

Content-Length: 611

Content-Type: application/xml

14

X-Prestan: (null): 4 (propfinddead)

<?xml version="1.0" encoding=""utf-8"7>

<propfind xmlns="DAV:'"'><prop>

<prop0 xmlns="http://webdav.org/neon/DavTester/'/>
<propl xmlns="http://webdav.org/neon/DavTester/"/>
<prop2 xmlns="http://webdav.org/neon/DavTester/"/>
<prop3 xmlns="http://webdav.org/neon/DavTester/'/>
<prop4 xmlns="http://webdav.org/neon/DavTester/'/>
<prop5 xmlns="http://webdav.org/neon/DavTester/' />
<prop6 xmlns="http://webdav.org/neon/DavTester/"/>
<prop7 xmlns="http://webdav.org/neon/DavTester/*/>
<prop8 xmlns="http://webdav.org/neon/DavTester/'/>
<prop9 xmlns="http://webdav.org/neon/DavTester/'/>
</prop></propfind>

Method: PROPFIND [Dead, single property on single resource]

PROPFIND /basic/davtest/prop HTTP/1.1
Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_0-dev
Connection: TE

TE: trailers

Depth: O

Content-Length: 143

Content-Type: application/xml

X-Prestan: (null): 4 (propfinddead)

<?xml version="1.0" encoding="utf-8"7>

<propfind xmlns="DAV:''><prop>

<prop0 xmlns="http://webdav.org/neon/DavTester/"/>
</prop></propfind>

Method: PROPFIND [Live, multiple properties on single resource]

PROPFIND /basic/davtest/prop HTTP/1.1
Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24._.0-dev
Connection: TE

TE: trailers

Depth: O

Content-Length: 404

Content-Type: application/xml

X-Prestan: (null): 5 (propfindlive)

<?xml version="1.0" encoding=""utf-8"7>

15

<propfind xmlns="DAV:''><prop>
<creationdate xmIns="DAV:'/>
<getlastmodified xmlns="DAV:"/>
<resourcetype xmlns="DAV:"/>
<supportedlock xmIns="DAV:"/>
<lockdiscovery xmlns="DAV:"/>
<getcontentlength xmlns="DAV:'/>
<getetag xmlns="DAV:"/>
<getcontentlanguage xmlns="DAV:"'/>
<getcontenttype xmlns="DAV:"/>
<supportedlock xmlns="DAV:"/>
</prop></propfind>

Method: PROPFIND [Live, single property on single resource]

PROPFIND /basic/davtest/prop HTTP/1.1
Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_0-dev
Connection: TE

TE: trailers

Depth: O

Content-Length: 121

Content-Type: application/xml

X-Prestan: (null): 5 (propfindlive)

<?xml version="1.0" encoding=""utf-8"7>
<propfind xmlns="DAV:'"'><prop>
<creationdate xmIns="DAV:''/>
</prop></propfind>

5.2 Resource management

5.21 PUT

¢ Obijective: This test measures the performance of writing resource data to a

web server. PUT is a commonly used method. For example, authors often

need to periodically refresh their updates to the server and this causes the

PUT method to be invoked frequently. To characterize the write capability

of a WebDAV server under different conditions, we perform this method on

three kinds of files: small, medium and large, corresponding to file sizes of

16

1K, 64K and 1M respectively.
¢ Implementation:
o DELETE the resource if it exists, and then PUT single resource with
different size of 1K, 64K and 1M respectively, finally clean up the

resource by deleting it at the end of all tests.

Method: PUT [1K Bytes single resource]

PUT /basic/davtest/res HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_0-dev
Connection: TE

TE: trailers

Content-Length: 1024

X-Prestan: (null): 6 (putlK)

This is Prestan test file.
This is Prestan test fTile.

Method: PUT [64K Bytes single resource]

PUT /basic/davtest/res HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24.0-dev
Connection: TE

TE: trailers

Content-Length: 65536

X-Prestan: (null): 1 (put64K)

This is Prestan test file.
This is Prestan test file.
This is Prestan test file.
This is Prestan test fTile.

Method: PUT [1024K Bytes single resource]

PUT /basic/davtest/res HTTP/1.1
Host: dav.cse.ucsc.edu:8282
User-Agent: davtest/0.9.2 neon/0.24_0-dev

17

Connection: TE

TE: trailers

Content-Length: 1048576
X-Prestan: (null): 8 (putl024K)

This is Prestan test file.
This is Prestan test fTile.
This is Prestan test file.
This is Prestan test file.
This is Prestan test file.
This is Prestan test file.
5.2.2 GET

¢ Objective: This test measures the performance of reading resource data
from a WebDAV server. GET is by far the frequently used method. Users
often need to retrieve resources from the server, either by browsing or
editing. To characterize the read capability of a WebDAV server under
different conditions, we perform this method on three kinds of files: small,
medium and large, corresponding to file sizes of 1K, 64K and 1M
respectively.

¢ Implementation:
o PUT a resource with size of 1K, 64K and 1M respectively, and then
repeatedly perform GET on this resource. Note that there is no

request body for the following examples, as is typical for GET.

Method: GET [1K Bytes single resource]

GET /basic/davtest/res HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_0-dev
Connection: TE

TE: trailers

X-Prestan: (null): 6 (getlKk)

18

Method: GET [64K Bytes single resource]

GET /basic/davtest/res HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24.0-dev
Connection: TE

TE: trailers

X-Prestan: (null): 7 (get64K)

Method: GET [1024K Bytes single resource]

GET /basic/davtest/res HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_0-dev
Connection: TE

TE: trailers

X-Prestan: (null): 8 (getl024K)

5.3 Namespace Management

Namespace management operations are provided in WebDAV to support the needs

of the authoring clients and servers that expect a hierarchical namespace. The MKCOL,

COPY and MOVE methods are designed to manage such namespaces, and operate much

as their operating system counterparts.

5.3.1 MKCOL

¢ Obijective: This experiment tests the performance of creating an empty

collection.

¢ Implementation:

0 Acollection hierarchy is created that is 10 levels deep and 100 wide at
the bottom level. That is, there are 100 sub-collections at the bottom

level.

Note that the MKCOL method does not take a request body.

19

Method: MKCOL

MKCOL /basic/davtest/coll/ HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24._.0-dev
Connection: TE

TE: trailers

X-Prestan: (null): 10 (my_collection)

5.3.2 COPY

¢ Objective: This test measures the performance of the COPY operation for a
single resource copy, a deep collection COPY.
¢ Implementation:

Create either a single resource or a deep, wide collection to the server, and
repeatedly copy it to a different location with the “overwrite” header set to true
(overwrite the destination); only the copy operation is measured.

The resources being copied are:

o Single resource (1K Bytes)
o0 Collection 10 levels deep with 100 resources at the bottom level

Note that the COPY method does not take a request body.

Method: COPY [Single resource]

COPY /basic/davtest/copy HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_.0-dev

Connection: TE

TE: trailers

Depth: infinity

Destination: http://dav.cse.ucsc.edu:8282/basic/davtest/copy_dest
Overwrite: T

X-Prestan: (null): 1 (begin)

Method: COPY [Collection with depth 10 and width 100]

20

COPY /basic/davtest/copy col/ HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_.0-dev

Connection: TE

TE: trailers

Depth: infinity

Destination: http://dav.cse.ucsc.edu:8282/basic/davtest/copy_col_dest/
Overwrite: T

X-Prestan: (null): 10 (my_collection)

5.3.3 MOVE

¢ Obijective: This test measures the performance of the MOVE operation for a
single resource copy, a deep collection MOVE.
¢ Implementation:

Create either a single resource or a deep, wide collection on the server, and
repeat the following two steps: (1) Copy A to B, (2) Move B to C with
“overwrite” header set to true. Note that only step (2) is measured.

The object could be:

o Single resource (1K Bytes)
0 Collection 10 levels deep with 100 resources at the bottom level

Note that the MOVE method does not take a request body.

Method: MOVE [Single resource]

MOVE /basic/davtest/move HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_.0-dev

Connection: TE

TE: trailers

Destination: http://dav.cse.ucsc.edu:8282/basic/davtest/move_dest
Overwrite: T

X-Prestan: (null): 1 (begin)

21

Method: MOVE [Collection with depth 10 and width 100]

MOVE /basic/davtest/move_col/ HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24._.0-dev

Connection: TE

TE: trailers

Destination: http://dav.cse.ucsc.edu:8282/basic/davtest/move_col_dest/
Overwrite: T

X-Prestan: (null): 10 (my_collection)

5.34 DELETE

¢ Objective: This test measures the performance of the DELETE operation for a
single resource copy, a deep collection DELETE.
¢ Implementation:

Create either a single resource or a deep, wide collection on the server, and
repeat the following two steps: (1) Copy Ato B, (2) Delete B. Note that only
step (2) is measured.

The object could be:
o Single resource (1K Bytes)
o0 Collection 10 levels deep with 100 resources at the bottom level

Note that the DELETE method does not take a request body.

Method: DELETE [Single resource]

DELETE /basic/davtest/delete HTTP/1.1
Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_0-dev
Connection: TE

TE: trailers

X-Prestan: (null): 1 (begin)

Method: DELETE [Collection with depth 10 and width 100]

22

DELETE /basic/davtest/delete_col/ HTTP/1.1
Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_0-dev
Connection: TE

TE: trailers

X-Prestan: (null): 10 (my_collection)

5.4 Lock management

Locking is a WebDAV feature that is used to prevent overwrite conflicts among
concurrently active authors. Two kinds of locks are defined in RFC 2518, shared locks
and exclusive locks. Each collaborating author should request an exclusive lock before
writing the object, and unlock it after accomplishing the task in order to let other authors
access it. Most WebDAV servers only implement exclusive locks. Due to this, we only
test the performance of exclusive locking functionality. Furthermore, since you need to

lock a resource to unlock it, LOCK and UNLOCK are tested together.

5.4.1 LOCK/UNLOCK

¢ Obijective: This test measures the performance of the LOCK/UNLOCK pair
for a single resource copy, and for a deep collection. All locks have a 3600
seconds duration, and we assume the lock duration does not have a substantial
impact on lock performance.
¢ Implementation:
We perform an exclusive LOCK/UNLOCK on the following objects:
o0 Single resource (1K Bytes)
0 Collection 10 levels deep with 100 non-collection resources at the
bottom level

Note that the LOCK method does not take a request body.

23

Method: LOCK [Single resource with Exclusive mode]

LOCK /basic/davtest/lockme HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24._.0-dev
Connection: TE

TE: trailers

Content-Length: 179

Content-Type: application/xml

Depth: 0O

Timeout: Second-3600

X-Prestan: (null): 11 (locks)

<?xml version="1.0" encoding=""utf-8"7>

<lockinfo xmIns="DAV: ">

<lockscope><exclusive/></lockscope>
<locktype><write/></locktype><owner>Prestan test suite</owner>
</lockinfo>

Method: LOCK [Collection with Exclusive mode]

LOCK /basic/davtest/lockme2/ HTTP/1.1
Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_.0-dev
Connection: TE

TE: trailers

Content-Length: 179

Content-Type: application/xml

Depth: infinity

Timeout: Second-3600

X-Prestan: (null): 11 (locks)

<?xml version="1.0" encoding=""utf-8"7>

<lockinfo xmIns="DAV:">

<lockscope><exclusive/></lockscope>
<locktype><write/></locktype><owner>Prestan test suite</owner>
</lockinfo>

Method: UNLOCK [Single resource]

UNLOCK /basic/davtest/lockme HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24._.0-dev

Connection: TE

TE: trailers

Lock-Token: <opaquelocktoken:d2ac996a-28c7-0310-al170-8d162c9b6438>
X-Prestan: (null): 11 (locks)

24

Method: UNLOCK [Collection]

UNLOCK /basic/davtest/lockme2/ HTTP/1.1

Host: dav.cse.ucsc.edu:8282

User-Agent: davtest/0.9.2 neon/0.24_0-dev

Connection: TE

TE: trailers

Lock-Token: <opaquelocktoken:1a309d6a-28c7-0310-95e1-92bacfth4327d>
X-Prestan: (null): 11 (locks)

5.5 The user interface of Prestan

Prestan is a command line tool, with the following input parameters and options:
Usage: Prestan [http://]hostname[:port]/path [username password] [options]
Option:

-r, --requests Number of repeat runs (Default: 10)

-c, --concurrency Number of concurrent connections (Default: 1)

-p, --properties Number of dead properties (Default: 10)

-d, --depth Depth of collection (Default: 10)
-w, --width Width of collection at the bottom level (Default: 100)
-0, --output Output file

Example: Prestan http://dav.cse.ucsc.edu:81/basic testl testl -r 100 -p 20

Requests: If “-requests” is specified, Prestan will repeat the methods comprising
each test corresponding number of times. For example, to measure the average response
time for the PROPFIND live single property test for a single resource, we issue a
PROPFIND method “-requests” number of times, measuring each request response time.

Afterwards, Prestan computes and reports the average response time.

25

Concurrency: If “-concurrency” is specified, Prestan will indicate “webmaster”
building up corresponding number of concurrent client connections.

Properties: If “-properties” is specified, Prestan will apply corresponding number of
properties on “Proppatch/Propfind” method.

Depth: If “-depth” is specified, Prestan will apply corresponding depth of collection
operations on “Copy/Move/Delete/Lock/Unlock” method.

Width: If “-width” is specified, Prestan will apply corresponding width of
collection operations on “Copy/Move/Delete/Lock/Unlock” method.

Output: If “-output” is specified, Prestan will redirect the standard output to the
corresponding output file.

Before performing the measurements, Prestan needs to set up the experiential
environment: (1) Create a temporary directory called PrestanTest on the server, (2)
Pre-send a set of WebDAV methods to warm up any server-side repository cache (i.e.,
database cache used by the user to store resources), (3) Perform the tests, (4) Delete

“PrestanTest” after clean up its underneath resources.

5.6 Prestan Output Format

Output of Prestan contains three parts: copyright information, test configuration
and test results. The left column of the results represents the methods tested, the right
column is the average response time in terms of microsecond. Below is an example.

> Prestan test.webdav.org/dav
Prestan, Version 2.0.3
Copyright(c) 2003 Teng Xu, GRASE Research Group at UCSC

http://www.soe.ucsc.edu/research/labs/grase

Server Warming Up..........ccccueenee. Done

26

Start Testing test.webdav.org/dav:

R R R R R R R R R R R R R R R AR R R R R R R R R e e

* Number of Requests 100

* Number of Dead Properties 10

* Depth of Collection 10

* Width of Collection 100

* Type of Methods WebDAV

N ——
ProppatchMult Rsp = 14248 [us]
ProppatchSingle Rsp = 14240 [us]
PropfindDeadMult Rsp = 13894 [us]
PropfindDeadSingle Rsp = 13730 [us]
PropfindLiveMult Rsp = 15025 [us]
PropfindLiveSingle Rsp = 14104 [us]
PutlK Rsp = 14215 [us]
GetlK Rsp = 14229 [us]
Put64K Rsp = 88967 [us]
Get64K Rsp = 31171 [us]
Put1024K Rsp = 487773 [us]
Get1024K Rsp = 363265 [us]
Copy Rsp = 14125 [us]
Move Rsp = 14044 [us]
Delete Rsp = 13758 [us]

27

MkCol Rsp = 14266 [us]

CopyCol Rsp = 43314 [us]
MoveCol Rsp = 45393 [us]
DeleteCol Rsp = 37217 [us]
Lock Rsp = 14613 [us]
UnLock Rsp = 13745 [us]
LockCol Rsp = 30966 [us]
UnLockCol Rsp = 23005 [us]

6 Experiments

In this section, we use Prestan to measure the average response time (ms) of

various WebDAV servers, along with analyzing the test results.

6.1 Practice One

To better understand the bottleneck of the WebDAV server, we performed
comparison of the performance of Apache and Catacomb. Apache WebDAV repository is
implemented on top of file system while Catacomb is implemented on top of MySQL
database. Besides, Catacomb supports DASL protocol. Both servers are installed on the
same machine, and we run all tests on the same client machine, which guarantees their
measurements are comparable.

The hardware/software configuration of the server machine is as below:

CPU Intel(R) Pentium(R) 4 CPU 1.70GHz

RAM 512MB

Disk MAXTOR 61.040L.2, ATA DISK drive 40GB IDE
NIC 3Com PCI 3¢905C Tornado

(ON] Linux RedHat 7.0

28

The hardware/software configuration of the client machine is as below:

CPU Intel(R) Pentium(R) 4 CPU 1.70GHz

RAM 512MB

Disk MAXTOR 6104012, ATA DISK drive 40GB IDE
NIC 3Com PCI 3¢905C Tornado

oS Linux RedHat 7.0

The client and server are connected through 100M-based LAN, and the PING time
is 100 ~ 150 us.

As shown in Table 2, generally Catacomb will be slower than Apache. Particularly,
the collection operations (Copycol, Movecol, Deletecol) are much slower than those on
ServerB. These operations seem to be the bottleneck, which arouse our curiosity to find

out the reason.

Catacomb (ms)] Apache (ms)| Catacomb/Apache
ProppatchMult 30 3 10.00
ProppatchSingle 8 3 2.67
PropfindDeadMult 8 3 2.67
PropfindDeadSingle 7 3 2.33
PropfindLiveMult 8 5 1.60
PropfindDeadSingle 7 2 3.50
PutlK 8 2 4.00
GetlK 4 3 1.33
Put64K 13 7 1.86
Get64K 1 8 1.38
Put1024K 128 91 1.41
Get1024K 112 99 1.13
Copy 16 4 4.00
Move 16 4 4.00
Delete 9 2 4.50
MkCol 1 3 3.67
CopyCol 280 20 14.00
MoveCol 477 16 29.81
DeleteCol 328 12 27.33

29

Lock 7 2.33
UnLock 8 4.00
LockCol 344 10 34.40
UnLockCol 251 7 35.86

Table 2: Performance Comparison of Catacomb and Apache

Since those methods are performed on a very deep (10 levels) and very wide (100
resources at the bottom level) collection, two possible factors could affect the
performance of collection operations. One is the collection depth, the other is the
collection width. Therefore, we made the following experiments to find which factor is

the determinant.

Catacomb(ms)| Apache(ms)| Catacomb/Apache
CopyCol 280 20 14.00
MoveCol 477 16 29.81
DeleteCol 328 12 27.33

Table 3: Catacomb vs. Apache with Depth 10 and Width 100

Catacomb(ms)| Apache(ms)] Catacomb/Apache
CopyCol 261 17 15.35
MoveCol 436 13 33.54
DeleteCol 301 9 33.44

Table 4: Catacomb vs. Apache with Depth 2 and Width 100

Catacomb(ms)| Apache(ms)| Catacomb/Apache
CopyCol 79 7 11.29
MoveCol 116 7 16.57
DeleteCol 77 5 15.40

Table 5: Catacomb vs. Apache with Depth 10 and Width 10

30

The original comparison between Catacomb and Apache is shown in Table 3. Table
4 shows the effect after reducing the collection depth from 10 to 2. We found that the gap
(the ratio Catacomb/Apache) between Catacomb and Apache remains roughly the same.
This rules out the possibility that collection depth is the determinant.

Next, as shown in Table 5, we performed a second experiment in which we shrunk
the width of the collection from 100 to 10. The gap between the two servers decreased
dramatically (50% ~ 100%), which proves that the performance bottleneck is associated
with collection width.

To give more details about the effect of collection width, we compare the

scalability of two servers on methods CopyCol, MoveCol and DeleteCol respectively.

Scalability of CopyCol

350000

300000

250000 -

2000004

150000 A Catacomb

100000

Response Time (us)

50000

0

10 20 30 40 50 60 70 80 90 100
Width of Collection

Figure 4: Scalability of CopyCol

31

Scalability of MoveCol

600000

500000

400000

300000

Catacomb

200000

Response Time (us)

100000

Width of Collection

Figure 5: Scalability of MoveCol

Scalability of DeleteCol

400000
350000
300000
250000

200000

Catacomb

150000

Response Time (us)

100000
50000
0

Width of Collection

Figure 6: Scalability of DeleteCol

As shown in above three figures, Apache’s response time almost remains the same
when collection width shrinking from 10 to 100; while Catacomb does not scale well,

with a response time that linearly increases much faster when the collection width grows.

6.2 Practice Two

We tested against various WebDAV servers from 12 companies at the annual
WebDAV Interoperability Testing Event at UCSC, in September 2004. The goal of the
event is to gather together, in one physical location, developers and testers of WebDAV,
DASL, DeltaV, and ACL clients and servers so they can exercise as many client/server
pairs as possible. Ideally, all functionality of each client will be tested against every
server.

As we mentioned in section 4, all these servers are in the same room, most of
which them are run on laptops. All of these tests are performed locally through
high-speed dedicated network (test client and WebDAV server are directly connected
through a 100M-based fullplex Ethernet link), which makes the network delay negligible.

The performance comparison of these servers is shown in Figure 7 and 8. Figure 7
gave a comparison on all WebDAV methods. But, Copycol, Movecol and Deletecol are so
outstanding that decrease the granularity of Y-axis. Therefore, we presented the

comparison in Figure 8 by filtering out the three methods.

33

Response Time (ms)

Performance Comparison of WebDAV Servers

ProppatchMult
Put64K
Put1024K
Delete
CopyCol

PropfindDeadMult
UnLock

PropfindLiveMult
DeleteCol
UnLockCol

Figure 7: Performance Comparison of WebDAV Servers (All Methods)

34

Performance Comparison of WebDAYV Servers

3OOW

250

200

150

Response Time (ms)

100

=
2 2 5 o
> 2 2
22308 & ¥ % xly
C T £ 2 = 5 > o
S 0 = S £ 5 3 S & —
= 8 O £ 2 Q © & 2 o B
c 9 T O o o o = = o = X X
Q = A > - S 0o O = © O © ©
a = IR a o < X o ©
°c 2283 8 e s 32 2
a 2= 3T £ QO s c
O o = &= o)
£ 8%
g o 9 &
Sa g
o —_
o

Figure 8: Performance Comparison of WebDAV Servers (Partial Methods)

The servers under testing include Microsoft 11S6.0, a NASA variant of the
Catacomb server, SUNONE WS6.1, Apache mod_dav, SoftwareAG Tamino, Xythos WFS
4.0 and Sambar 5.0. However, we cannot fairly compare them due to the different
machines used for each server, so we refer to them anonymously in the rest of results.

The following Table 6 lists the technique details for each server and some performance

characteristics.

35

Serverl

It is based on file system. Both resource and property are stored on Ext3 file

system. It shows extraordinary performance on every method.

Server2

Database based repository. General performance is pretty good except for
collection methods. (COPYCOL, MOVECOL and DELETECOL). However,

PROPPATCH for multiple properties is very slow.

Server3

File system based repository. Resource, property and locks are all represented
as files. Generally, its performance is pretty good. However, PUT is 10~30

times slower than GET.

Server4

PROPPATCH is almost 30 times slower than PROPFIND. Also, we noticed
that COPY/MOVE collection (which is 10 level deep and 100 resources at the

bottom level) is 30~40 times slower than COPY/MOVE single resource.

Server5

What we know about this server is both property and resource are stored in file
system, while lock database uses Berkeley libdbm. Generally, its performance
is very good. In particular, the performance of PUT/GET 1M resource is
outstanding. Besides, the performance gap of COPY/MOVE between
collection and single resource is the smallest (only 3 times slower) among all

the tested servers.

Server6

COPY/MOVE collection is 60 times slower than COPY/MOVE single

resource.

Server7

This server is built on database. We notice that PUT is much slower than GET.
Also, the COPY/MOVE collection is 40~50 times slower than COPY/MOVE

a single resource.

Table 6: WebDAV Server Tests Results and Brief Analysis

As shown in Table 6, the file system based repositories outperform database based

repositories in most cases. Particularly, the scalability of the COPY/MOVE is much

36

better for file system than for database repositories. We think this is due to the different
storage characteristics of file systems and databases. As we know, most modern file
systems (such as Ext3) can take advantage of logical locality of the files in the same
directory by storing them in the same cylinder group, and therefore the retrieval of files in
the same directory can be achieved by a very small number of disk accesses. The
database model has no awareness of such locality, treating individual files in the same
directory as unrelated records. Accordingly, it has to retrieve files in the same directory
separately, hence response time is degraded when the directory size grows.

In server 2, we notice that the performance of PROPPATCH for multiple properties
is degraded as compared to PROPPATCH for a single property. We think this is related to
storing each dead property in a different row of database table.

Generally, file system based repositories outperform the database approach in most
cases. Also, we should note that the obvious drawback of the file system based approach
is the lack of SEARCH capability, which is an important functionality of the DASL
protocol for searching WebDAV repositories. In addition, the database approach also has

the advantage of supporting full content search in the future.

7 Conclusion

In this paper, we present an automated WebDAV server test tool that can correctly,
accurately and comprehensively measure server performance, and help people gain
insight into server performance behavior.

There are a number of contributions in this paper. First, we developed a tool for
performing client-side performance measurement of WebDAV servers. This has

significantly improved visibility into the performance of WebDAV servers, and the

37

relative performance benefits of different implementation strategies. Lastly, we
discovered and resolved one performance bottleneck in Neon library, which will benefit
other WebDAV client developers in the future.

In the experiments, we comprehensively analyzed the performance degradation of
the COPY/MOVE collection operation, which was related to the storage characteristics of
different repository schemes. Beyond the performance aspect, we should take other
WebDAV functionality issues into the design considerations. Note database generally is
slower than file system result.

Although this paper initiates the research work on WebDAV server performance
measurements, and provides some understandings of the server’s behaviors, we think the
work just started. Future research should focus on the WebDAV server measurements
associated with different workloads, especially those that mimic the behavior of

WebDAV authoring clients.

8 Acknowledgements

First, I would like to thank Professor Jim Whitehead, my advisor, for his insight
and guidance in conducting this project. His rich knowledge and experience helped me to
tackle many difficulties, and his detailed feedback on this report was very helpful. Second,
I would like to thank my teammate Mark Slater, who provided useful information and
good ideas in the second half of the project. Third, I would like to thank Kai Pan, Sung
Kim and Guozheng Ge, for their unselfish guidance, readiness to help and feedback on
the project write-up. Professor Garcia-Luna sacrificed his time and effort to review this

report, and | extend my sincere gratitude to him as well.

38

Reference

[1] E. Whitehead and Y. Goland, “WebDAV - A Network Protocol for Remote
Collaborative Authoring on the Web”, Proc. of the Sixth European Conf. on
Computer Supported Cooperative Work (ECSCW'99), Copenhagen, Denmark,
September 12-16, 1999.

[2] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen, “HTTP Extensions
for Distributed Authoring — WEBDAV”. Internet Proposed Standard Request for
Comments (RFC) 2518, 1999.

[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.
Berners-Lee, “Hypertext Transfer Protocol — HTTP/1.1”, Internet Draft Standard RFC
2616, June 1999.

[4] G. Stein, “WebDAV resources”, 2003. http://www.webdav.org/

[5] G Stein, “mod dav: a DAV module for Apache”, 2003.
http://www.webdav.org/mod_dav.

[6] Henrik Frystyk Nielsen, James Gettys, Anselm Baird-Smith, Eric Prud’hommeaux,
Hakon Wium Lie, and Chris Lilley, “Network performance effects of HTTP/1.1,
CSS1, and PNG.” In Proceedings of ACM SIGCOMM'97 Conference, September
1997.

[7] V. N. Padmanabhan and J. Mogul, “Improving HTTP Latency,” In Second World
Wide Web Conference '94: Mosaic and the Web, pp. 995-1005, October 1994.

[8] Nagle, J., “Congestion Control in TCP/IP Internetworks.” ARPANET Working
Group Requests for Comment, DDN Network Information Center, SRI International,
Menlo Park, CA, Jan. 1984. RFC-896.

[9] J. Almeida, V. Almeida, and D. Yates, “Measuring the behavior of a world-wide
web server.” Technical Report 1996-025, Boston University, Oct. 1996.

[10] G. Banga and P. Druschel, “Measuring the capacity of a web server under
realistic loads.” World Wide Web Journal (Special Issue on World Wide Web
Characterization and Performance Evaluation), 2(1):69-83, May 1999.

[11] J. C. Hu, S. Mungee, and D. C. Schmidt, “Techniques for developing and
measuring high-performance Web servers over ATM networks.” In Proceedings of
the Conference on Computer Communications (IEEE Infocom), San Francisco, CA,
Mar 1998.

[12] W. Stevens, “RFC 2001 - TCP Slow Start, Congestion Avoidance, Fast

39

http://www.webdav.org/
http://www.webdav.org/mod_dav

Retransmit, and Fast Recovery Algorithms”, Jan 1997

[13] Apache, “Manual Page: ab - Apache HTTP Server benchmarking tool”,
http://httpd.apache.org/docs/programs/ab.html

[14] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah
Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer, “Simple Object
Access Protocol (SOAP) 1.1”, May 2000. (www.w3.0rg/TR/SOAP).

[15] G. Trent and M. Sake, “WebSTONE: The First Generation in HTTP Server
Benchmarking,” http://www.mindcraft.com/webstone /paper.html (February 1995).

[16] Sambar WebDAV server, http://www.sambar.com

[17] M. Allman, V. Paxson, W. Stevens, “RFC 2581 - TCP congestion control”, April
1999

[18] Software AG Tamino Server, http://www.softwareag.com/tamino/

40

http://httpd.apache.org/docs/programs/ab.html
http://www.sambar.com/
http://www.softwareag.com/tamino/

	Introduction
	Background
	HTTP 1.1
	WebDAV

	Related work
	Design
	Response time
	Nagle algorithm
	Network latency
	Concurrent model

	Implementation
	Properties manipulation
	PROPPATCH
	PROPFIND

	Resource management
	PUT
	GET

	Namespace Management
	MKCOL
	COPY
	MOVE
	DELETE

	Lock management
	LOCK/UNLOCK

	The user interface of Prestan
	Prestan Output Format

	Experiments
	Practice One
	Practice Two

	Conclusion
	Acknowledgements
	Reference

